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Several specialized configuration interaction (CI) calculations for the ground states of the He 
isoelectronic series have been carried out with the purpose of defining successive orders of approxi- 
mation to the wave function, so that reliable patterns of convergence can be investigated for the energy, 
some one-electron expectation values, and the wave function itself. We advocate the use of a sequence 
of wave functions to extrapolate expectation values and to find the extrapolation error = final error 
bound. As a direct consequence of this study, we show what the utmost limitations of CI expansions 
are for these systems and what is to be expected in similar situations (electron pairs in many-electron 
wave functions). Finally, a comparison is made between CI and interparticle coordinates wave 
functions. 

Fiir die isoelektronische Reihe des He werden eine Reihe spezieller CI-Rechnungen f/ir die Grund- 
zust~inde ausgeftihrt mit dem Ziel, eine Folge yon N~iherungen an die Wellenfunktion definieren zu 
k6nnen. Auf diese Weise k6nnen zuverl~issige Kriterien ffir das Konvergeuzverhalten ffir die Energie, 
einige Ein-Elektronen-Erwartungswerte und fiir die Wellenfunktion untersucht werden. Wir befiir- 
worten den Gebrauch einer Folge yon Wellenfunktionen, um die Erwartungswerte extrapolieren zu 
k6nnen und den Fehler der Extrapolation (= die endgiiltige Fehlergrenze) zu finden. Darausfolgend 
zeigen wir fiir diese Systeme die Grenzen von CI-Reihen und was in ~ihnlichen Fgllen (Elektronen- 
paaren in Mehr-Elektronen-Wellen-Funktionen) zu erwarten ist. CI Funktionen und Funktionen, die 
die Relativkoordinaten der Teilchen enthalten, werden verglichen. 

On a effectu6 plusieurs calculs d'interaction de configuration sp6cialis6s pour les ~tats fondament- 
aux de la s~rie iso~lectronique ~ He, en vue de d6terminer la fonction d'onde avec diff6rents degr6s 
d'approximation pour +tudier avec sfiret6 la convergence de l'~nergie, de certains observables mono- 
61ectroniques et de la fonction d'onde elle m6me. Nous avons recours ~t une suite de fonctions d'onde 
pour extrapoler les valeurs moyennes et trouver la limite d'erreur. Cette 6tude a pour cons6quence 
directe de montrer que les limitations les plus s6v6res du traitement d'I.C, apparaissent pour ces 
syst~mes et sans doute pour ceux pr6sentant une situation analogue (paires 61ectroniques dans des 
fonctions d'onde poly61ectroniques). Finallement, on compare I'I.C. et les fonctions d'onde contenant 
les coordonn6es interparticulaires. 

1. Introduction 

Accurate and extensive calculations for the ground states of the He isoelec- 
tronic series have been carried out by Pekeris [1, 2] and also by Scherr and" 
Knight [3, 41. It is a most notable characteristic of Pekeris' wave functions that 
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successive orders of approximation can be uniquely determined, so that expecta- 
tion values, the energy included, converge in a simple and well defined way 
towards their exact values 1. Unfortunately, at the present time, there are no such 
powerful practical methods to deal with larger systems. Thus, it is of interest to 
investigate the possibility of making meaningful calculations of electronic struc- 
tures by means of the less accurate, but quite manageable, configuration inter- 
action (CI) method. By meaningful calculations we understand those in which 
accurate expectation values are reported together with their error bounds, and 
in which the approximations in the wave function are quantitatively estimated. 

In this work, the convergence patterns for wave functions and expectation 
values are studied; they provide error bounds to expectation values as well as 
information on the limitations of CI expansions, and they permit the assessing 
of the accuracy of recent CI calculations [6-8]. 

The CI expansions are considered in terms of natural spin-orbitals I-9, 10] 
(NSO's). In spite of the fact that there are many works on CI expansions for these 
systems [10-19], and that several NSO's analyses of them are available [10, 14, 
18, 20, 21], new calculations are in order, for our purposes. In Sect. 2 the wave 
functions employed are described together with the method used for the extra- 
polation of energies. Next the patterns of convergence for energies and eigenvector 
components are shown. The results obtained for some one-electron expectation 
values are analized likewise. 

It is also of interest to study which sort of admixture of CI and interparticle 
coordinates methods is the most likely to be adopted so that more or less 
definitive ab initio energy results for many-electron systems can be guaranteed 
in the future. A preliminary view of this problem is given in Sect. 4. 

2. Wave Functions and Extrapolation Method 

The wave functions we consider are of the form 

/max 
~(1, 2) = ~ ~bz(r 1, r2) Pl(cos7) A l �9 spin part /=0 

;m_~ { f=~) 1 I(l) } 
= ~ (1 + P12) Ril(rl) R jr(r2) Bijl Pl(cos7) " 

: ~, g*(l) Zi(21Di i 
= i~=aoX{ I~=)l (Pil(rl) (Pil(r2) Cil} Pl(c~ " spin 

with 

(1) 

spin part (2) 

(3) 

(4) 

]fit I ~ [Ci+l,Z[. (5) 

The right hand members in Eqs. (1) and (2) are finite CI expansions for two- 
electron systems,iS states [22]. Eq. (3) gives their representations in terms of NSO's. 
Eq. (4) is similar to Eq. (3); it defines the functions epic, which are called natural 
radial orbitals (NRO's) of 7/(1, 2). The orthonormal sets {Ri~ } and {(Plz} are 

1 Some off-diagonal matrix elements escape to this behaviour; see [5]. 
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linear combinations of Slater-type orbitals Siz: 

J(t) 

rp. = Z Sj, aju,  (6) 
j = l  

Si I = Ni Ir(.j~ + z) e- zj~, (7) 

where Nit is a normalization constant and 

J(1) > I(l) .  (8) 

At this point it is necessary to define the partial energy contributions A E'u 
and A E'[v For this, we consider the wave functions T' and T": 

T'(1, 2) = ) (1 + P12) q)ilq)jlEijl Pt(cos7)" spin part ,  (9) 
3 = l  

T"(1, 2) = t=o I~"~tI~')~.i=1 (Pil(PilGil} Pt(c~ spin part (10) 

with 
/'max --< l . . . .  
I'(1) <= I(l) .  

The functions above are truncations of the T of Eqs. (1)-(4) in which the  linear 
coefficients have been reoptimized. We denote by E'~z the energy obtained from 
T' of Eq. (9) when l =  l'ma, and i=I ' ( l ) ,  while El' l is defined analogously from 
Eq. (10). The partial energy contributions are then 

A E ' i l  = E l l  - E'i-l.1, (11) 

A E','t = E'[t - E','_I, 1 . (12) 

If T is the best variational approximation when the CI expansion is truncated 
at l =/max, we think of it as an "exact" 012.../-limit wave function, i.e., for/max = 2, 
T is an "exact" spd- l imi t  wave function. We can also talk about "exact" 
E'il(lmax) values. 

In dealing with accurate wave function one finds in practice, for He, that 

A E',t = AE',', +_ O.05 AE'[, ; (13) 

moreover, with increasing nuclear charge and i values this agreement is even 
better. It turns out that this small discrepancy between A E'It and A E'[~ values 
makes the study of the patterns of convergence for the energy, independent of 
the distinction between them. In what follows, the values reported are A E'iz's and 
the primes are dropped. 

Now let us consider the function T' given by Eq. (9) and let T ' ( - i  l) denote a 
T' from which orbital (il) has been deleted. Then, we find, in practice, the following 
relationship: 

AEu = (T ' IHI  7"5 - ( T ' ( - i l ) l H I  T ' ( - i l ) ) + O . O O 2 A E i  i , (14) 

for I < lmax,' 

i = I'(/) 
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which means that the "energy contributions" of an orbital (il) are practically 
independent of the presence of higher harmonics in the wave function. Eq. (14) 
also tells us that, for accurate angular limit wave functions, the small energy 
errors in each of 'the angular components add up to the total energy error. In 
addition, although for small i values the E'i~'s show a slight dependence on the 
ln,,x which defines kg, this is not the case for E~t values. Of course, E~o~ values are 
affected under the same circumstances, i.e. E~oo for He is about -2.87896 a.u. (He), 
even though Eq. (14) is still valid. 

In practice it is not difficult to determine whether or not a A Eli has converged 
to its exact value: the STO set is manipulated to make every E'i~ a minimum, i.e. 
further STO's are added until the A E'ii's remain stationary. For  He, the A E w 
values, up to i = 5, are believed to be accurate to seven decimals; AE6o may be 
off by a few units in the seventh decimal and the error of AETo is probably not 
greater than 10 per cent, while AEso , AE9o and AElo.o are certainly far from 
correct. When l > 0, the computed E ,  values are affected by the same errors 
resulting from the lower harmonic contributions, and thus the A Ei~'s can always 
be computed accurately. 

We shall proceed to write the basic equations for the extrapolation of the 
energy. Let us denote by E~, E~, ... etc., the calculated angular energy limits. 
Then, from (14) it follows that 

E~ol = E~ +/- type corrections, (15) 

AEil (16) /-type corrections = (l - 1)-type corrections + (E~, z - E~) + 
i=h+l  

where the subscript h in E~z, represents the highest i value for which the 
corresponding A E~ is trustworthy, as determined in the process of building up 
the STO basis. The superscript c in the Eit's indicates that these are computed 
quantities, i.e. 

Ehl  = EChl q-  (l  - -  1)-type corrections. (17) 

The A Eiz's for i >  h are found from empirical relationships, suggested by an 
analysis of their convergence patterns when i < h (see Section 3): 

Let us refer now to the construction of the STO set. (The choice of STO 
functions over Gaussian functions is obvious 1-23].) The search for adequate 
STO parameters creates several problems which can be faced in many possible 
ways. The path that we take (which we do not claim to be the only desirable one) 
is as follows: a large non-optimized STO set is employed to compute a He wave 
function which includes radial terms only. We obtain the NSO's of this function, 
and the one with the largest occupation number is written as a sum of a positive 
function plus a negative function. These functions are then "eye fitted" to two 
STO's with the help of an STO table. The new STO set is then conveniently 
enlarged, while particular attention is being given to the spatial distribution of 
the additional STO's relative to the first two. The process is then repeated, and 
this time the first two NSO's are decomposed and fitted. When we reach the stage 
in which the fourth NSO is to be fitted, we find that the positive and negative 
functions are nearly identical, and thus the whole process is broken. In this way, 
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after five minutes of computer time a, 6 STO's are obtained from which we get a 
wave function with an eigenvalue E = -2.879001 a.u. (He). Supplementary STO's, 
evenly distributed through the relevant spatial regions, are then introduced, but 
now priority is given to the energy improvements and to the stability of the AEi~'s, 
as pointed out before in the discussion on the extrapolation method. Some of the 
former STO's are slightly modified to "make room" for the new ones. After 
obtaining the first ten s-type STO's for He, we proceed to add p-type STO's in a 
similar fashion, while keeping the Sj0's fixed. Then the Sjo'S are varied again in 
the hope of getting an improved sp-energy limit but without success; the original 
{Sjo} set is finally kept intact. The Sj2's are found likewise. (We have also con- 
sidered functions S~3, but only in order to test the stability of quantities related to 
the convergence patterns for the eigenvector components and some one-electron 
expectation values.) Similar energy results and patterns of convergence are 
obtained when instead of proceeding as above, the sets {S~1} and {S~2 } are con- 
structed from {S~o} in the following manner 

Z j l  = 1.6Z j0 ; nil = njo ; j = 1, 2, ... 8, (18) 

Z jz=2 .6Z jo ;  n j2=njo ;  j = 1 , 2 , . . . 6 .  (19) 

The only reason for having less STO's for higher/-values is the lack of additional 
computer storage. I n fact, as we shall see in the next section, in order to get energy 
errors smaller than 10-7 a.u. for each harmonic contribution, an increasing num- 
ber of STO's is needed as 1 becomes larger. The empirically determined factors 1.6 
and 2.6 of Eqs. (18) and (19) are not exempt of meaning. As pointed out by Shull 
and L6wdin [14], if the radial basis employed consists of associated Laguerre 
functions of order (2/+ 2), the orbital exponent Z~ for the /th angular type as 
determined by a maximum overlapping criterion, is shown to be Zo(2/+ 3)/3. 
The parameters Z~o for He are, in the order in which they have been obtained: 
1.30; 3.15; 1.30; 2.23; 3.25; 6.05; 7.80; 3.70; 5.25; and 3.40, and the n~o'S are: 
0; 1; 1; 0; 2; 0; 2; 4; 3, and 5, respectively. The Zjl's , nil's , Z~2's and nja'S are 
obtained from Eqs. (18) and (19). 

For the other members of the isoelectronic series with a nuclear charge Z, 
the STO sets are found by scaling the set for He, as has been done by Davis in his 
studies of the radial limits [17] : 

Zj,(Z) = A(Z).  Z~z(2)/3.25 ; nj~(Z) = njz(2 ) (20) 

with A(Z)= 5.31; 7.3; 9.3; 11.2; 13.1, and 15.0 for Z =  3 through 8, respectively. 
The validity of this procedure has been successfully tested for Z = 8. 

It remains to be said how the spd-limit wave functions are obtained from the 
STO basis. Because of storage requirements of the computer program employed, 
we cannot handle the full [10s, 8p, 6d] orbital basis. Thus, [-10s, 8p] wave functions 
are computed and the resulting NSO basis is truncated into an [8s, 7p] orbital 
basis. This set is now combined with six d-type STO's to compute spd-limit wave 
functions and NSO's. 

2 We have employed the CDC 3600/3400 computer at Indiana lJniversity, with an effective 
storage capacity of 41000 words. The computer programs are those used in previous calculations 
(Refs. [7, 8]) and the computations are carried out in double precision arithmetic. 
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The  t runca t ion  effected on the sp orb i ta l  basis sl ightly d is turbs  the pa t te rns  
of  convergence  for the E~0's when these are  s tudied  with spd-limit wave functions. 
Similar  cons idera t ions  app ly  to the de t e rmina t i on  of  the e lectronic  densi ty  at  the 

nucleus. 

3. Patterns of Convergence for Energies and Expansion Coefficients 

A. Radial Energy Limit 

In Table  1 we have g r o u p e d  the rad ia l  energy limits for He, as ca lcula ted  and  
es t imated  by  var ious  authors ,  in o rde r  to fix in the reader ' s  mind  the k ind  of  energy 
accuracy  we shall  be deal ing with. 

Table  2 shows the ca lcu la ted  E~0 values for He  and  0 6 +. We find that  the rad ia l  
energy l imit  for He  can be es t imated  f rom the empi r ica l  re la t ionship  

AEio = - A  o " (bo+i) -6+6oAEio  for 2_<i -<7  (21) 

where A o = 0 . 3 2 2 ,  bo = - 0 . 3 5  and  60=0 .13 .  Eq. (21) gives each AEio for He, 
i = 2, 3, . . . ,  7, with no more  than  13 per  cent of  error .  Assuming  tha t  each AE w, 
i > 8, ca lcu la ted  f rom (21), has  an e r ror  no t  greater  than  25 per  cent, t ak ing  into 
cons ide ra t ion  poss ib le  er rors  of  up to 15 per  cent for AEvo, and using Eqs. (15) 
and  (16), the exact  r ad ia l  energy l imit  of  He  is es t imated  to be 

E~oo = -2 .8790284  + 0.0000012 a.u. (He) .  

We  see that ,  acco rd ing  to Eq. (21), A E12,o ~ 10-  7 a.u., and  tha t  the r ema inde r  of  
the infinite sum (from i =  13 t h rough  infinity) does  no t  exceed 3 - 10-7 a.u. 

B. Higher Angular Energy Limits 

Simi lar ly  as in the case of  the rad ia l  limit,  the A Eiz's are  given by 

A Eil= -- Al(b I + i + 1)- 6 ~__ 61A E~t, i > 2 ,  (22) 

which is also val id  for i = 1 when I = 2. I t  m a y  be said at  this po in t  tha t  the 
- 6 power  in Eq. (22) is qui te  a fact:  a - 5 or  a - 7 power  would  increase 61 to 0.40 
and  even higher.  The  results  of  an  app l i ca t ion  of  Eq. (22) for He are given in Table  3. 

Table 1. Radial energy limit for He 

Calculated" Estimated 

Weiss b - 2.878956 - -  
Shulland L6wdin c -2.878970 -2.87900 _+ 0.00003 
Handler and J o y  d -2.8790190 - -  
Davis e - 2.8790248 - 2.8790280 +_ 0.0000018 
This work f - 2.8790255 - 2.8790284 • 0.0000012 
Schwartz g -2.8790264 -2.879028 __+0.000001 

a Energies in a.u. (He). 
b Ref. [t5]; 5 basic fuctions. 
c Ref. [14]; 6 basic functions. 
d Ref. [19] ; ll-terms expansion. 

e Ref. [t7]; 11 basic functions. 
f 10basic functions. 
g Ref. [-167; 45-terms expansion. 
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Table 2. Calculated E w values for He and 0 6+ 

i Eio(He)" - A E i o  b E~o(He) c'd - A E i o  Eio(O6+) e - A E i o  e 

1 -2.861531 -2.861651 -59.111141 
2 -2.87792920 1639820 -2.87790016 1624916 -59.12483994 1369894 
3 -2.87884420 91500 -2.87883670 93654 -59.12582586 98592 
4 -2.87898022 13602 -2.87897668 13998 -59.12597988 15402 
5 -2.87901204 3182 -2.87900996 3328 -59.12601636 3648 
6 -2.87902065 861 -2.87901944 948 -59.12602619 983 
7 -2.87902479 414 -2.87902381 437 -59.12603121 502 
8 -2.87902509 r 30 -2.87902480 e 99 -59.12603148 f 27 
9 -2.87902547 f 38 

10 -2,87902548 f 1 

a The NOS's are taken from an s-limit wave function. 
u In units of 10 -8 a.u. (He). 
c The NSO's are taken from an spd-limit wave function. 
d The differences between this column and the first one are explained at the end of Sect. 2. 

In units o f l0  -8 a.u. (O). 
f These values differ appreciably from the exact ones; see discussion preceeding Eq. (15). 

Table 3. Values of  ( - A E i 2 )  for He, according to Eq, (22) 

i -AE~ 2 

6 0.000006360 
7 3162 
8 1692 
9 960 

10 586 
11 355 
12 229 
13 151 
14 103 
15 72 
16 51 
17 37 

The ET's from our spd-limit wave functions are given an Table 4, the para- 
meters corresponding to Eq. (22) in Table 5. The At's and b~'s for Li + through N 5 + 
can be readily interpolated from those given in Table 5, if one assumes a linear 
dependence with respect to Z, in which case the corresponding 6z values oscillate 
between 0.05 and 0.20. 

Accurate angular energy limits for He through O 6+, obtained using Eqs. (15), 
(16), and (22), are presented in Table 6; their probable errors a r e  10 -6 a.u. for 
the E~o'S, 4 . 10  . 6  a .u .  for the E~l 's  and 10 -5 a.u. for the E~oz'S. Also, we find 
that AE14,1 ,-~AE14,2 ,,~ 10-7 a.u., and that in general, the rate of convergence 
of the radial expansions associated with each/-value deteriorates with increasing I. 
This behaviour was conjectured long ago by Schwartz [16] on the basis of similar 
results obtained by second order  perturbation theory. 
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Table 4. E[ values from our spd-limit wave functions, in a.u. (atom) 

133 

I H e  L i  + Be ; +  B 3+ C 4+ N s+ 0 6+ 

0 - 2 . 8 7 9 0 2 4 8  - 7 . 2 5 2 4 8 8 1  - 13 .6268554 - 2 2 . 0 0 1 5 0 9 7  - 3 2 . 3 7 6 2 9 1 5  - 4 4 . 7 5 1 1 4 1 3  - 5 9 . 1 2 6 0 3 1 5  
1 -2.9005069 -7.2758835 -13.6511042 -22.0262422 -32.4013359 -44.7764031 -59.1514533 
2 -2.9027492 -7.2786498 - 13.6541429 -22.0294477 -32.4046533 -44.7798012 -59.1549127 

Table 5. Parameters of Eq. (22) for the Extrapolation of E~ol's 

I A l (He) b z (He) 6 z (He) A t ( 0  6+ ) b I ( 0  6 +) 61 ( 0  6+ ) 

0 0.322 -0.35 0.13 0.416 -0.25 0.16 
1 1.03 - 0.05 0.06 1.57 - 0.05 0.10 
2 1.80 0.10 0.03 3.29 0.20 0.08 

Table 6. Estimated E~z values for He through 0 6+ 

1 H e  Li  + Be  =+ B 3+ C 4+ N s+ 0 6+ 

0 -2.8790284 -7.2524917 - 13.6268590 -22.0015134 - 32.3762952 -44.7511450 -59.1260350 
1 -2.900520 -7.275897 -13.651118 -22.026257 -32.401350 -44.776418 -59.151469 
2 -2.902774 -7.278677 - 13.654172 -22.029479 -32.404686 -44.779836 -59.154950 

U / + q  

and ,  as a coro l la ry ,  

C. A Golden Rule 

The  m o s t  in t e res t ing  empi r i ca l  r e l a t i onsh ip  g o v e r n i n g  the  A E~z's seems to be 

- AEi.t > - AEi, l+ l > - AEi+ l,Z (23) 

which,  if p e r m a n e n t l y  conf i rmed ,  m i g h t  well  be  cal led the  9olden rule for the 
e x t r a p o l a t i o n  of  CI  energies.  Th e  s a m e  rule  ho lds  also in  the  case of  first row a toms ,  
w h e n  the  A Eiz's are  c o n v e n i e n t l y  redef ined  [-8]. I t  wou ld  be in t e res t ing  to in-  
ves t igate  if there  is a n y  theore t ica l  h in t  r eg a rd ing  the genera l  app l i cab i l i t y  of  (23), 
at  least  for the  sys tems  we cons ide r  in  this work.  In  Tab l e  7 we i l lus t ra te  this  
b e h a v i o u r  for He. 

F r o m  Eq. (23) we can  get the  fo l lowing  u p p e r  b o u n d s  Ut+ i to the energy  con-  
t r i b u t i o n s  ez+i: 

U,+, = Z AEi, > Z AEI,,+, = e , + , ,  (24a) 
i = 2  i=1  

Ul+2 := 2 AEi, > • AEI,,+, > ~ AEI,,+e=g,+ 2, (24b) 
i = 3  i=2 i=1  

A E u > ' " >  E AEi, l+q=e,+q, (24c) 
i = q + l  i=1  

l+q 
EV+q=Eo~z+ ~ U,,>Eoo,~+q, (25) 

l ' = / + 1  

EV= Eoot + ~ U r > E ( e x a c t ) .  (26) 
l ' = / + 1  
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Table 7. Calculated ( -  A Eil) values for He 

o 

1 2.861651 0.01942906 0.00171935 
2 1624916 167169 36964 
3 93654 28155 10124 
4 13998 6869 3471 
5 3328 2207 1455 
6 948 615" 285" 
7 437 384 a 
8 99 a 

" These values differ appreciably from the exact ones, see discussion preceding Eq. (15). 

Table 8, Values of E v for He and illustration of 1-4 behaviour 

E v - U~ 0.043 l- 4 

3 -2.903307 0.000533 0.000533 
4 -2.903470 163 168 
5 -2.903532 62 69 
6 -2.903560 28 33 
7 -2.903574 14 18 
8 -2.903582 80 105 
9 -2.903587 49 66 

10 -2.903590 32 43 

Table 9. Upper bounds Ef  for He through 0 6+ 

H e  L i  + B e  z + B 3  + C 4 + N 5 + 0 6 + 

3 -2.903307 -7.279405 -13.654967 -22.030304 -32.405531 -44.780691 -59.155813 
4 -2.903470 -7.279634 - 13.655219 -22.030567 -32.405800 -44.780963 -59.156087 
5 -2.903532 -7.279724 -13.655319 -22.030671 -32.405906 -44.781071 -59.156196 
6 -2.903560 -7.279764 -13.655364 -22.030718 -32.405954 -44.781120 -59.156245 
Eexact a -2.903724 -7.279913 -13.655566 -22.030972 -32.406247 -44.781445 -59.156595 

" Ref. [1]. 

The results of an application of Eq. (25) are displayed in Table 8, together with the 
1-4 asymptotic behaviour for the successive harmonic contributions to the 
energy [16]. 

We can define A z + ~ by 
Alq-1 = @/+1 --  Ol+l)/t;l+l "~ (27) 

it is likely that the inequality 

At+i+ 1 >= At+ i (28) 

holds true, although it does not strictly follow from (24). If Eq. (28) is correct, 
then the ez's might show an even better l -~ behaviour than the Uz's, as suggested 
by comparing the various entries of Table 8. In Table 9, upper bounds E v for He 
through 0 6 § are presented. 
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Table 10. Parameters of Eq. (29) for the extrapolation of C~l's 
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l A~ (He) b I (He) n I (He) 61 (He) A t (06+) b~ (06 +) nt (O6+) ~z ( ~ +) 

0 0,267 - 0.60 4 0.0t a 0.0872 - 0.40 4 0.01" 
1 5.98 0.50 5 0.02 1.87 0.60 5 0.01 
2 11.66 0.90 5 0.005 3.538 0.95 5 0.002 

Except for C2o , where the error of Eq. (29) is of 12 per cent. 

If  instead of  wishing to obtain upper  bounds  E[ ~ one is interested in more  
plausible approximat ions  to the ez's, one might  a t tempt  to extrapolate the para- 
meters A~ and bz of  Eq. (22) for higher I values. For  instance, for He, one can set 
A 3 = 2 . 6  and b3=0 .2 ,  which give an e3 (ca l cu l a t ed )= -0 .00062a .u .  A good  
estimate for ~3 is -0 .000553  a.u. (see Sect. 4), and thus the energy error in the 
extrapolat ion above  is more  than ten per cent. However,  if we take the latter value 
for e3 and postulate an  l - 4  behaviour  for the e~'s with I_>_4, we obtain 
E = - 2 . 9 0 3 6 6 a . u .  (He), which is still an upper  bound,  and within 0.00006 a.u. 
of the exact energy value. A more  empirical procedure  to get ez values, l > 3, 
consists in adjusting the constant  of the 1-4 law, so that  the energy converges 
towards  its exact value. 

D. Expansion Coefficients 

We consider the spd-limit wave functions in their natural  form. The coeffi- 
cients Cu of  Eq. (4) are found tO satisfy 

Cit = - A~(b~ + i + I) -"~ -t- ~51C~z , (29) 

except for Clo. The parameters  of  Eq. (29) are given in Table 10. We see that  
these 6is are considerably smaller than those of  Eq. (22). The trend of  decreasing 
6~'s with increasing/-values is maintained, The powers - 4  for the s-components,  
and - 5  for the p-'s and higher ones, are quite definite. 

An inequality similar to our  golden rule holds true: 

IC~l > IC~,~+11 > IC~+~,~l �9 (30) 

E. Z-Dependent Trends 

The trends to be discussed below are derived from the spd-limit wave func- 
tions. A similar behaviour  is observed when either s-limit or  sp-limit wave functions 
are considered. In this subsection, the algebraic operat ions are carried out  as if 
all a toms were of  infinite mass, and the results are later interpreted in the 
appropr ia te  a tomic  units: a,u. (atom). 

A crude expression for E~o(Z ) is 

E 10(Z) = - (Z - 5/16) 2 - 0.0137 _+ 0.0003. (31) 

Eq. (31) can be improved  as follows: 

E,  o(Z) = -- (Z -- 5/16) 2 -- A(Z)  (32a) 

A(Z)  = A(2) + (A(oo) -- A(2)) (1 - 1/Z -- 2 /Z  z) + 0.00001 (32 b) 

with A(2) = 0.013995 and A(oe) = 0.013425. 
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Assuming Z > Z ' ,  we find the important relationship for the AE,(Z)'s (not 
valid for AE2o(Z)): 

AE,(Z) = AE,(Z') + (AE,(oe) - AE,(Z'))(1 - (Z'/Z) 2) + 0.1 h, AE,(Z), (33 a) 

hil/2 ~- (z]Eil(Zmax) - ZEil(Zmin)) /(AEil(Zmax) -~ A Eil(Zmin)) (33 b) 

where Zm, x and Zmi n define the interval in which Eq. (33a) is valid; the greater 
the interval, the greater the percentage of error involved in Eq. (33a). For 
Zm,x = 8, Zml . = 2, we find hn <0.3, so that (33a) gives at most an error of 
3 per cent. We see that all AE~z's decrease with increasing Z values, except for 
AE2o which increases. This increment of AE2o more than compensates the 
lowering of the other AE~o'S (i > 3), and thus the overall s-type contributions to 
the correlation energy becomes smaller for larger Z values. 

The equations regulating the Z-dependence of the expansion coefficients 
Cw(Z) are very simple: 

C , o ( Z )  = C , o ( Z ' )  + (1 - C,o(Z'))(1 - (Z ' lZ )  ~) + A ,  

_<_ 0.0002- ( z ' / z )  . C l  o (Z )  , 

and 

Cw(Z ) = a~. (Z'/Z). C~o(Z') +_ 0.01 C~o(Z), i > 3, 

ai = 1.00 + 0 .05 .  

(34a) 

(34b) 

(35 a) 

(35b) 

An equation analogous to Eq. (35) holds for C2o(Z ) and also for Cil(Z) and 
Ci2(Z), but the percentage of error is somewhat larger. 

F. Results for some One-Electron Expectation Values 

It is of interest to see if "energy methods" can be channeled to yield not 
only good extrapolated energies, but also other quantities of physical interest. 
What follows are preliminary results which point out the main difficulties. 

The expectation value of an operator 

N 

f =  ~ f ,  
i = l  

can be expressed as 

where 

M 

(kglf[ ~ )  = f =  ~ n~ .f j  (36) 
j = l  

f j  = (Z~(1)If1 [Z~(1)), (37) 

y(l[ 1') Zj(1) = nj" )~j(1), (38) 

7(111') = N ~ ~*(1', 2, ... N) kg(1, 2, ... N)d(2, 3 ... N).  (39) 

We refer to the eigenvalues nj as occupation numbers,, the )~js are the NSO's 
of ~, and 7(1[1') is the reduced first order density matrix. The constant M in 
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Eq. (36) is equal to the dimension of the NSO space. When ku has 1S symmetry, 
the )~j's are symmetry adapted [-24] 

),j(1)=C#//ylm,(O,q)){fi or (40) 

and also 

nj = nil (independent of m I and spin). (41) 

Further, if f j  = fj(r), then we have 

f j  = f// (independent of m I and spin) (42) 

and thus, Eq. (36) may be rewritten in the form 

/max I(/) 
f =  ~. ~ 2 ( 2 l +  1) 'n a ' f / /  (43) 

l = 0  i = 1  

= 2 Fit, ( 4 4 )  
l, i 

F//= 2(21 + 1). n/t "fu. (45) 

The one-electron operators we consider are 

f = fi(r) =- (6(r,) + 6(r2))/2 
and 

f = r" =- (r'~ + r"2)/2 

When n = - 3  or - 4 ,  the summation in Eq. (43) is where n is an integer. 
understood to start with l = 1. 

Upon inspection of the results obtained with s-, sp-, spd-, and (spd-limit + one 
f orbital) wave functions, it is clear that there exist convergence patterns for the 
fa's, nu's and F/~'s. Let us denote by ga any one of these quantities; then we have 

gi/= g/t(lmax) - (46) 

One alternative for the solution of our problem is to calculate git(oo)'s. 
Except for {g10(lmax)}, the sequences of values {giz(lm,~) } converge rapidly and 
simply in all the cases considered. However, these sequences are quite sensitive 
to a good description of the lth type radial functions. Thus, even if there are 
patterns of convergence, these may lead to extrapolated values which differ from 
the exact ones by more than the error inherent in the extrapolation itself. In other 
words, the stability of the AE~z's does not guarantee that of the g~[s. (Of course, 
one might then look for g//'s defined in a manner analogous to the AE/~'s, but 
this does not work; in particular there does not exist an equation similar to 
Eq. (14).) 

Let us illustrate this shortcoming with a(r). In Table 11 we list Fw(ImJ values. 
Our extrapolated result for He is 1.810401_+0.000005, while Pekeris finds 
calculated and extrapolated values of 1.810419 and 1.810427, respectively [2]. 
Our result is encouraging (it agrees with Pekeris' to four decimals) and it is not 
(the apparent extrapolation error is five times too small). The main reason for this 
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Table 1 L Pattern of convergence for the average value of 6(r) 

i Fio(O) Fio(1 ) Fio(2) Fio(3) ~ Fio(oo) 

1 1.7989685 1.7944311 1.7948152 1.7948075 1.794810 
2 162829 150811 149478 149342 14933 
3 6477 5816 5734 5722 572 
4 841 722 706 703 702 
5 183 143 !35 134 134 
6 253 183 172 170 17 
7 69 74 67 67 7 
~(r) 1.816008 1.810183 1.810423 1.810400 1.810401 

" Calculated with a (spd-limit + energy opt. f orbital) wave function. 

discrepancy has been tracked to insufficient stability of the Fio(2)'s, which in turn 
arises as a consequence Of a truncation of the NSO basis employed, in going 
from the sp-limit wave function to the spd- l imi t  wave function (see end of 
Section 2). It is apparent that some weak stability of the F~z's has to be accepted 
as a practical fact in CI calculations. However, it is imperative to control these 
fluctuations and to give an estimate of their magnitude: work in this 
direction is in progress. 

The angular convergence of some one-electron expectation values is illustrated 
in Table 12. It is likely, although this has not yet been investigated thoroughly 
enough, that accurate s-limit wave functions give lower bounds to the r" values 
computed with the exact radial limit wave functions, when n is positive. The 
same may be said about 01 .../-limit wave funct ions/f  the first ( l -  1) harmonic 
contributions are represented exactly. Such a behaviour might give a clue for 
setting up an adequate method to compute these expectation values: after a 
reasonable STO basis is obtained, the orbital exponents Zj~ are varied to make 
r" a maximum, while the linear coefficients of the CI expansion are always deter- 
mined through the eigenvalue equation for the energy. Of course, such a 
procedure must be carried out without penalizing the energy. 

In Table 13 we collect spd- l imi t  results for Li § through N 5+. The average 
value of r -  1, which is related to the diamagnetic shielding of the nucleus by the 
electrons, seems to converge towards ( Z -  5/16) for high Z, which is the same 
value one would obtain if the computation were made with the optimized 
hydrogenic 7 j 

7 j = N e -  1/2. (z- 5/16). (rl +r2). spin part .  

The behaviour of r -  3 is found to be linear with Z, to within 0.2 per cent. 
A most successful series of CI calculations for the two-electron atomic 

species has been carried out by Weiss [15]: he combines optimized. STO 
parameters with an energetically optimum distribution of STO's among the 
different harmonic functions. We have obtained the corresponding 14-terms NSO 
expansion from Weiss' STO basis (g orbitals omitted). The angular limits results 
are shown in Table 14. We have also explored another definition of the 
successive orders of approximation, as shown in Table 15. In any case, the 
{gi~(lmax)} sequences still exhibit convergence patterns, but they are not stable 
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under further improvements  of the wave function and thus the extrapolated 
values are worthless. (Obviously, this does not prevent them of approaching the 
exact values in some cases.) 

Finally, it should be mentioned that there exists a 9olden rule for the Fi~'s 

Fil(Imax) > Fz, l+l(/ . . . .  ) > Fz+ a,t(lma• (47) 

Unfortunately, Eq. (47) is not sufficient to estimate the angular convergence of 
the expectation values considered, if the CI expansion is truncated at lm, ~ = 2, 
because at this stage of approximation,  the value of F~o(OV) remains uncertain. 
This points out to the bottleneck of the problem: the determination of Fxo(OO). 

4. CI vs. Interpartiele Coordinates  

It has been held for many years that Hylleraas-type wave functions for 
many-electron systems are too cumbersome, while CI expansions converge 
slowly. It is impossible to assess the present validity and importance of this old 
complaint without discussing the physical problems which are at stake. But it 
is always important  to expose and to understand the weak points in each of the 
methods employed. 

Fifteen years ago, Green et al. [-12] transformed the famous 3- and 6- 
parameters wave functions of Hylleraas [25] (to be denoted T3ny and ~6Hy 
respectively) into CI expansions where the functions ~z(rl, r2) of Eq. (1) are 
replaced by functions ~l ( r<, r>)  3. The same type of analysis has later been 
extended 1-13] to Chandrasekhar 's  3-parameters wave function [-27], to be 
denoted Tch. In Table 16 we have listed the calculated ~ values obtained from 
various wave functions together with our "exact" estimates ez. (Green and 
collaborators report  unnormalized e~ values which we have here normalized; 
also, if the coefficients of the resulting CI expansion are reoptimized, only e~ of 
7'c~ shows variations in the fifth decimal, with respect to the normalized 
values.) 

The implications of the results exhibited in Table 16 are remarkable. First, 
we notice that e~ derived from ~ff6Hy agrees quite well with e2. The sp-limit energy 
error of t//6Hy is shown to be -0.000482 a.u.; if we add this value to the total 
energy for T6Hy we get the exact energy! The obvious conclusion is that 

Table 16. Energy analysis of interparticle coordinates wave functions for He 

1 - ez(fcn) Error --el(Tany) Error --el(T6ny) Error -ela 

0 2.87757~ 0.00146 2.878287 0.00074 2.878674 0.00036 2.879028 b 
1 0.0~087 0.00062 0.02117 0.00032 0.02136~ 0.00013 0.021492 b 
2 0.00209 0.00016 0.00208 0.00017 0.002255 0.00000 0.002254 b 
3 0.00051 0.00004 0.00051 0.00004 0.000553 b - -  - -  
Sum4 to~o 0.00038 0.00001 0.000393 0.00000 0 . 0 0 0 3 9 4  b - -  - -  

Calc. energy -2.90142 -2.90244 -2.90324 

1 0 "  

a Obtained from the data of Table 6. 
b These values are considered to be "exact". 

3 Similar functions have later been employed by Schwartz [16], and by Byron and Joachain [26]. 
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~6Hy gives ec3, ~,, ... etc., with more than 6 decimals of accuracy and that all its 
energy error is due to an inadequate representation of the sp basis. Thus, one 
should be able to compute He wave functions with energy errors smaller than 
10 -6 a.u. just by adding a suitable sp basis to the 6-dimensional set which 
defines T6ny, or even better, by using the direct product of both sets as basis. 
A similar reasoning on 7Jch, 

7Jch = N ( e - Z m e  -z2r2 + e-Z2"le -z~r2) (1 + 0~r12 ) 

leads us to predict that the admixture of a (1 + ~r 12) factor into an sp basis, should 
bring the energy of He to a value in error by no more than 0.00019 a.u. This 
clearly indicates the interest there is in setting up a refined computer program to 
explore the possibility of using such a restricted basis in computations for states 
of first row atoms. 

5. Discussion 

Let us summarize what has been accomplished in this work. First, we have 
shown (empirically) the existence of patterns of convergence for the CI energy, 
expansion coefficients and some one-electron expectation values. The basic 
equations for the extrapolation of the energy, Eqs. (15) and (16), are based on 
Eq. (14), which has been assumed by other authors for a long time [28]; here we 
have carried out a nearly exhaustive test of it, and its consequences have been 
exploited in an empirical study of the (practical) asymptotic behaviour of suitably 
defined energy contributions. The convergence of the radial expansions is shown 
to deteriorate with increasing /-values, and for l > 3, the successive harmonic 
contributions to the energy follow, approximately, an 1-4 type of law. The 
various implications of such convergence behaviour can best be assessed by 
examining Tables 2, 3, 7, 8 and 16. 

A 9olden rule for the extrapolation of CI energies is proposed. Other 
alternatives are discussed in relation to the atomic states considered. 

The convergence patterns for the expansion coefficients throw light into the 
convergence of the CI wave functions itself. 

The Z-dependent trends found for various quantities are didactically valuable 
because of their simplicity. 

The channeling of "energy methods" to obtain other quantities of physical 
interest is considered, and possible alternatives and improvements are discussed. 
The existence of patterns of convergence alone does not legitimate the extra- 
polation of the quantities involved, unless such patterns are Shown to be stable 
under further improvement of the wave function. On the way, we have noticed 
that CI is the natural method to compute the average value of 6(r). Other 
methods, like those of Chandrasekhar and Herzberg [29], or that of Kinoshita 
[30], are relatively inferior in this respect 4, in spite of their superiority with regard 
to the energy. 

4 These wave functions give average 6(r) values of 1.8102 and 1.8106 respectively; ~3ny and 
I//6tty give 1.7984 and 1.8167 respectively, see [31]. The values reported in Refs. [2, 4] are the most 
accurate ones. 
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The analysis of Green et aI. has been combined with our estimated angular 
energy limits and, in this way, the source of the energy errors in various inter- 
particle coordinates wave functions is quantitatively discussed s. It is shown that an 
sp basis with a correlation factor of the type (1 + c~r12 ) can give wave functions 
with energy errors smaller than 0.0002 a.u. 

All previous considerations regarding the energy also apply to the pertinent 
"portions" of many-electron wave functions (K shell expansions) as in the 
"pair correlations" theory of Sinano~lu and coworkers [32], and some of the 
results in this paper have been already utilized to estimate K shell energy 
errors [7, 8]. 

Clearly, the highest dividend paid by this type of investigation is the discovery 
of the methodological problems one has to face in the determination of CI wave 
functions, as well as the exposure of the inherent limitations of a given type 
of expansion. The determination of rigorous upper and lower bounds to computed 
expectation values is a separate problem. 
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